Chapter 1
First-Order Ordinary Differential Equations
1
Introduction

1.1
Applications of Ordinary Differential Equations - A Simple Example 

Physical Problem





(
Math Modeling




(
Solving the Math Problem

· Interpretation of Its Physical Meaning
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Problem



F = ma = mg
 where    a = g = acceleration of gravity


 EQ \f(  h(t+Dt) - h(t)  , Dt )     = v(t) or,  for t ( 0,
 EQ \f(  dh  ,dt)   =  v
Since
a =  EQ \f(  dv  ,dt)   =    EQ \f(  d2h  , dt2 ) 
we have
 EQ \f(  d2h  ,dt2)  = a  =  g  (  constant
The above equation can be written as


 EQ \f(d,dt) \b\bc\[( \f(dh,dt) )  = g

 EQ \x( Mathematical Modelling ) 

 EQ \f(dh,dt)  = g t  +  c1 
 
or
v  =  g t  +  c1
and
h  =   EQ \f(1,  2  ) g t2 + c1 t + c2
I.C. (Initial Condition):


h(0)  =  0
( 
c2  =  0


v(0)  =  0
( 
c1  =  0

Thus, we have
h =  EQ \f(1,  2  ) g t2 #

 EQ \x( Solution of the Math Problem ) 
where
h = falling distance


g = acceleration of gravity


t = time

 EQ \x( Interpretation of Physical Meaning ) 
A Physical Problem  


(   Mathematical Model   



(     EQ \x(Solution of the Mathematical Problem)



(   Interpretation in Terms of Its Physical Meaning
1.2
Definitions
(1)
Ordinary Differential Equation   

            y = y(x)





y:  dependent variable;
x: independent variable



f(y, x, y', y", ... )  =  0

where 
y'  =   EQ \f(  dy  ,dx)    ,   y"  =   EQ \f(  d2y  ,dx2) 
Partial Differential Equation
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(2)
Order  (階)  : the highest derivative of y with respect to x in the equation


y" + 4y' + 5y  =  0
2nd order


y'  y cosx  =  0
1st order


(y(4))3/5  2y"  =  cosx
4th order
The first order ODEs can be written as
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(3)
Solution:  
A solution of an nth–order differential equation is a function that is n times differentiable and that sat​isfies the differential equation.


A solution of a given 1st-order differential equation on some open interval 
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is a function 
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 and satisfies this equation for all x in that interval; that is, the equation becomes an identity if we replace the unknown function y by h and y’ by h’.
(a)  General solution:  contains arbitrary constants, e.g., 


 EQ \f(  d2h  ,dt2)  = g

(
h(t)  =   EQ \f(1,  2  ) g t2 + c1 t + c2


where c1 and c2 are constants and are arbitrary.

(b) Particular solution: no arbitrary constants


 EQ \f(  d2h  ,dt2)  = g   with   EQ \f(  dh  ,dt) (t=0)  =  0,  h(t=0)  =  0 (initial conditions)

(
h(t)  =   EQ \f(1,  2  ) g t2

(c) Trivial solution: If y = 0 is a solution to a differential equation on an interval I, then y = 0 is called the trivial solution to that differ​ential equation on I.  e.g., 


 EQ \f(  dy  ,dx)  = 3y


y = 0
 trivial solution


y = c e3x
 general solution

(d)
Explicit solution:  y = f(x)

e.g.,
y = c e3x is an explicit solution of y' = 3y

(e) Implicit solution:  f(x, y) = 0

e.g., 
x2 + y2  1 = 0 is an implicit solution of   y y' = – x.

(f) Singular solution: a solution can't be obtained from the general solution

e.g.,
y'2  x y' + y = 0


y = c x  c2
 general solution


y = x2/4
 singular solution
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(4) Verification of Solution
[Example] The solution of 
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[Example] The solution of 
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on the interval 
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. Verify: 
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· There are equations that do not have solutions at all. For example,
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 does not have a solution for real y.
· There are equations that do not have general solutions.  For example, 
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has only a trivial solution
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2 Separable Differential Equations
(Textbook Sec. 1.3)
2.1
Separation of Variables  (分離變數法)

If the differential equation can be reduced to the form 
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g(y) y'  =  f(x)

or, since
y'  =   EQ \f(  dy  ,dx) 

g(y) dy  =  f(x) dx
then we have a separable equation and the general solution can be obtained by integration on both sides:


 EQ \i(, , g(y))  dy =   EQ \i( , , f(x))  dx + c
where c is an arbitrary constant.
[Example]
  EQ \f(  dy  ,  dx  )  = x  EQ \r(1 - y2) 
[Solution]
 EQ \f(dy,\r(1 - y2))  = x dx


 EQ \i(, , \f(dy,\r( 1 - y2 ) ) )   =  EQ \i(, , xdx )  + c

or
sin–1y  =   EQ \f(x2,  2  )  +  c
implicit solution

or
y  =  sin (  EQ \f(x2,  2  )  +  c  )
explicit solution
 [Example]
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[Solution]
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Trivial solution!
[Example]
y' = – 2 x y

[Solution]
 EQ \f(  dy  ,  dx  )  =  2 x y


 EQ \f(  dy  , y)  =  2x dx


ln |y|  =  – x2 + c

or
|y|  =  exp{ -x2 + c }

or
y  =  c' e–x2
Note that if c' = 0, we have a trivial solution y = 0.
[Example]


[image: image21.wmf]/             (1)1

  

yyxy

¢

=-=


[Solution]
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[Exercises]   Please solve the following equations


(i)
ex-y  EQ \f(dy, dx )   + 1 = 0


(ii)
y’  =  2 x y
;
y(0)  =  1


(iii)
y'  =   EQ \f( xy + 3x - y - 3 , xy - 2x + 4y - 8 ) 
An analytic function f(x,y) in a domain D of the xy-plane can be factored in D, f(x,y)=g(x)h(y), if and only if in D,
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2.2
Initial Value Problems
Ordinary Differential Equation + Initial Condition(s)
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[Example]
( x2 +1 ) y' + ( y2 +1 )  =  0
y(0)  =  1

[Solution]
 EQ \f( dy ,  y2 + 1  )  =     EQ \f( dx ,  x2 + 1  ) 

tan–1y =  – tan–1x + c

or
tan–1x + tan–1y  =  c


tan(tan–1x + tan–1y)  =  tan c

or
 EQ \f(x + y, 1 - xy )  = tan c  =  c'
 general solution
Since y(0)  =  1,  we have tan c  =  1

(
 EQ \f(x + y, 1 - xy )  = 1

or
y  =   EQ \f(1 - x, 1 + x )   #
 particular solution
Note that in general there is no arbitrary constant for initial value problems.

3
Equations Reducible to Separable Forms 
(1)
y'  =  f(ax + by + c)
where a, b and c are constants
Let
u = ax + by + c

 EQ \f(du,dx)   = a + b  EQ \f(dy,dx)   = a + b f(u)
(
 EQ \i( , , \f(du,a + b f(u))  )  =    EQ \i(,, dx)  + c
[Example]
y' = (x + y)2+ a2

a  =  constant

Let
u = x + y      
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 EQ \f(du,dx)  = 1 +  EQ \f(dy,dx) 
(
 EQ \f(du,dx)   = 1+u2 + a2

 EQ \f(du, u2 + a2 + 1 )   =   dx

and
 EQ \i( , , \f(du, u2 + a2 + 1 ) )  =   x + c


 EQ \f(1, \r(1+a2) )   tan–1  EQ \f(u, \r(1+a2) )   =   x + c
u =  EQ \r(1+a2)  tan( x EQ \r(1+a2)  + c')
                        where   
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
y =  EQ \r(1+a2)  tan( x EQ \r(1+a2)  + c')  x
#
(2)
y'  =  f(y/x)

Let 
y/x = u
or
y = x u


 EQ \f(dy,dx)  = x  EQ \f(du,dx)  + u = f(u)

 EQ \f(du, f(u) - u )  =   EQ \f(dx, x ) 

 EQ \i( , , \f(du, f(u) - u )  )  = ln |x| + c

or
x  =  c1 exp  EQ \b\bc\{( \i( , , \f(du, f(u) - u ) ) ) 
[Example]
y' =   EQ \f(y - kx, x + ky ) 

where k = constant

Let 
y/x = u 
or
y = x u


y'  =  u + x u'


u + x u' =  EQ \f(u - k, 1 + ku )  ;   or  x u'  =  -  EQ \f( k (1 + u2) , 1 + ku ) 
(
 EQ \b\bc\{(  \f(1, k( 1 + u2) ) + \f( u ,1 + u2)  )   du +  EQ \f(dx, x )  =  0


 EQ \f( 1 ,k)  tan–1 u + ln  EQ \r(1+u2)  + ln |x| = c

or
 EQ \f(1,k)  tan–1  EQ \f(y,x)   + ln  EQ \r(x2+y2)  =  c
#
[Example]
y'  =   EQ \f(y, x Ð k\r(x2+y2) ) 
,
k > 0

with the initial condition
y(0)  =  a  ,   a  0

The differential equation can be written as


 EQ \f(dx,dy)  =  EQ \f( x Ð k\r(x2+y2) ,y)   =   EQ \f(x,y)   – k  EQ \r(\b\bc\[(\f(x,y))2+ 1) 
Let
x/y = u
or
x = y u


 EQ \f(dx,dy)  = u + y  EQ \f(du,dy) 
or
u + y  EQ \f(du,dy)   = u Ð k EQ \r(u2–1) 

 EQ \f(du, \r(1+u2) )   +  k  EQ \f(dy,y)   = 0


ln (u +  EQ \r(u2+1)  ) + ln yk = c

or
x +  EQ \r(x2+y2)  = c1 y1Ðk
From the initial condition y(0) = a, we have


c1 = ak

 EQ \r(x2+y2)  + x = ak y1Ðk
#

[Exercises]
Please solve the following equations:


(i)
y'  =   EQ \f( xy + 2y2 ,x2) 

(ii)
y'  =   EQ \f( y - x , y + x ) 

(iii)
y'  =   EQ \f(   2 x-1 y  -  3   ,   2 y-1 x  -  3   ) 
(3)
y'  =  f  EQ \b\bc\(( \f( Ax + By + C ,ax + by + c) ) 
where A, B, C, a, b, c, are constants

a.
C = c = 0


y'  =  f  EQ \b\bc\(( \f( Ax + By , ax + by ) )   = f  EQ \b\bc\(( \f(A + B(y/x) , a + b(y/x) ) )  = g(y/x)

(
Same as Case (2)

b.
C ( 0 
and/or  c ( 0

(i)  A b  B a ( 0
Let 
x = t + h

y = z + d

where h and d are constants to be determined later
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We may take appropriate h and d such that


 EQ \b\lc\{( \a( Ah + Bd + C = 0, , ah + bd + c = 0)) 
then, the differential equation reduces to


 EQ \f(dz,dt)   = f  EQ \b\bc\(( \f( At + Bz , at + bz ) ) 
(
Same as Case (3)a or Case (2)
(ii)  A b  B a = 0 or 
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(a)
a =  b  =  0
y'  =  f  EQ \b\bc\(( \f( Ax + By + C ,c) )  = F (px + qy+r)

(
Same as Case (1)
(b)
Set  A x + B y + C  =  u       or      a x + b y + c  =  u
(
Same as Case (1) (b)
a ( 0
y'  =  
f  EQ \b\bc\(( \f( aAx + Bay + Ac + aC - cA ,a (ax + by + c)) ) 

= f  EQ \b\bc\(( \f( aAx + bAy + Ac + aC - cA ,a (ax + by + c)) ) 

= f  EQ \b\bc\(( \f(A,a) + \f( C - cA/a ,ax + by + c )) 

= F(px + qy)
(
Case (1)

(c)
b ( 0

y' 
= f  EQ \b\bc\(( \f( bAx + bBy + cB + bC - cB ,b (ax + by + c)) ) 

= f  EQ \b\bc\(( \f(B,b) + \f( C - cB/b , ax + by + c ) ) 
(iii) Exact Differential ( Read Section 5 .
[Example]
(7y  3x + 3) y' + 3y  7x + 7 =  0

[Solution]   The above ODE can be written as


y'  =   EQ \f( 7x - 3y - 7 ,  - 3x + 7y + 3  ) 
Check
A b  B a = 7(7  (3) ( (3) ( 0
Let
x = t + h 

and
y = z + d

and take h and d such that


 EQ \b\lc\{( \a(Ah + Bd + C = 0, ,ah + bd + c = 0)) 
or
 EQ \b\lc\{( \a(7h - 3d - 7 = 0, ,-3h + 7d + 3 = 0 )) 

d = 0

h = 1

and
t  =  x  1
z  =  y


 EQ \f( dy ,dx)   =    EQ \f( dz ,dt)   =    EQ \f(7(x - 1) - 3y, -3(x - 1) + 7y )    =     EQ \f( 7 t - 3 z ,  - 3 t + 7 z  ) 
thus
 EQ \f( dz ,dt)  =     EQ \f( 7t - 3z ,  –3t + 7z  ) 
(
Case (2)

Ans: 
( y + x  1 )5 ( y  x + 1 )2  =  C

Please check it !! 
#
[Example]
(y  x + 5 ) y'  =  y  x + 1

[Solution] A b  B a =0
Let 
u = y  x + 1   
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 EQ \f(du,dx)  =  EQ \f(dy,dx)   – 1 = y' 1


y'  =  1 + u'

(
(u + 4) (1 + u')  = u

or
( u + 4 ) u'  =  –4


 EQ \i( , , (u + 4))  du =   EQ \i( , , -4)  dx + c


 EQ \f( 1 ,2)  u2 + 4u + 4x = c

i.e.,
(y  x)2+ 10 y  2 x  =  c'

[Exercise]
Solve 
y' =   EQ \f(  1  -  2 y  -  4 x  ,  1  +  y  +  2 x  ) 
4 Modeling (Textbook Sec. 1.4)

[image: image31.wmf]Physical Problems

Mathematical Models

Modeling


[Example] 
Time required for draining a tank  Torricelli's Law
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V = A v t

where
V  =  volume of water flows out during t


A = cross-sectional area of the outlet = 0.7854 cm2

v = velocity of the out-flowing water

Torricelli's law states that


v = 0.6  EQ \r(2gh) 
where
g  = acceleration of gravity  =  980 cm/sec2

h = height of water above the outlet
Note that V must equal to change of the volumes of water in the tank, i.e.,


V =  B h
(Mass Balance)

where
B   =  cross-sectional area of the tank  =  7854 cm2

h = decrease of the height h(y) of the water

i.e.,
A v t = – B h

or
 EQ \f(Dh,Dt)   =      EQ \f(  Av  ,B)   =      EQ \f( A 0.6 \r(2gh) ,B) 
Letting t ( 0, we obtain the differential equation


 EQ \f(dh,dt)    =     EQ \f( A 0.6 \r(2gh) ,B)  =    0.00266  EQ \r(h) 
Initially, the height of the water is 150 cm, i.e.,


h(0)  =  150 cm
 Initial Condition

we then have


h(t)  =  (12.25  0.00133 t)2
#

[Exercises]   Please do the exercises on p. 18, 19 of the Textbook.

5
Exact Differential Equations (Textbook Sec. 1.5)
5.1
Total Differential (Exact Differential)

The total differential du of a function of two variables u(x,y) is defined by


du =   EQ \f(  (u  ,(x)  dx +   EQ \f(  (u  ,(y)  dy

e.g., if u(x,y)  =  x y,  then the total differential of u is


du =  y dx + x dy

Suppose that we take the total differential of the equation u(x,y)  =  c, then


du =   EQ \f(  (u  ,(x) dx +  EQ \f(  (u  ,(y) dy  =  0
e.g., the total differential of the equation


x y  =  c

is
y dx + x dy  =  0

or
y'  =  – y/x      (ODE!)
Reversing the situation, suppose that we start with the differential equation


M(x,y) dx + N(x,y) dy  =  0 
If we can find a function u(x,y) such that


 EQ \f(  (u  ,(x)   = M(x,y)

 EQ \f(  (u  ,(y)   =  N(x,y)

then the differential equation becomes


 EQ \f(  (u  ,(x)  dx +   EQ \f(  (u  ,(y)  dy  =  0

which has the general solution


u(x,y)  =  c

In this case, the differential equation

M(x,y) dx + N(x,y) dy  =  0         
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is called an exact differential equation.
5.2
Condition for Exact Differential

If  M(x,y) dx + N(x,y) dy  =  0  is an exact differential equation, then


M(x,y)  =   EQ \f(  (u  ,(x) 
;
N(x,y)  =   EQ \f(  (u  ,(y) 
But
 EQ \f(  (M(x,y)  ,(y)   =  EQ \f(( , (y ) \f( (u ,(x)   =  EQ \f(( , (x ) \f( (u ,(y)   =  EQ \f(  (N(x,y)  ,(x) 
Thus,
 EQ \x(   \f( (M ,(y)  =  \f( (N ,(x)   ) 
is the necessary and sufficient condition for Mdx + Ndy to be a total differential.
5.3
Solution for Exact Differential Equations

(1)
Method I

Since
 EQ \f(  (u  ,(x)   = M(x,y)

the solution has the following form


u =  EQ \i(  ,, M dx)   + k(y)   = c

To determine k(y), we take  EQ \f( (u ,(y) of the above equation and compare the result with


 EQ \f(  (u  ,(y)  = N(x,y)
Alternatively,
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[Example]  Solve     x y' + y + 4 = 0

[Solution]
(y + 4) dx + x dy = 0

or
M  =  y + 4
;
N  =  x

Check the exactness by


 EQ \f(  (M  ,(y)   = 1 =    EQ \f(  (N  ,(x) 
( 
Exact Differential

Solve for
u =  EQ \i(  ,, M dx)   + k(y)


u =  EQ \i( , , (y + 4) dx)  + k(y) = x y + 4x + k(y)

But
 EQ \f((u,(y)  = N(x,y)

or
x + k'(y)  =  x

we have
k'(y)  =  0
or
k(y)  =  c*

Thus, we have the solution u = c or


x y + 4x + c*  =  c

or
x y + 4x  =  c'
#
Differentiate with respect to x, i.e.
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[Example]
(1  sin x tan y) dx + (cos x sec2 y) dy = 0

[Solution] 
M = 1  sin x tan y

N = cos x sec2 y


 EQ \f(  (M  ,(y)   =  sin x sec2 y =   EQ \f(  (N  ,(x) 
(
Exact Differential 

The solution is


u =  EQ \i( , , M dx)  + k(y)



=  EQ \i(,, (1 - sin x tan y) dx)  + k(y)



= x + cos x tan y + k(y)


 EQ \f((u,(y)   = N(x,y)

or
cos x sec2 y + k(y)'  =  cos x sec2 y


k'(y)  =  0
or
k(y)  =  c*

The solution u = c becomes


x + cos x tan y = c'
#
(2)
Method II  (Not Recommended!!)
The solution of the exact differential equation


M(x,y) dx + N(x,y) dy = 0

can be obtained by the following procedure:

(i)
Evaluate  EQ \i( , , M dx)   , holding y constant

(ii)
Evaluate R, where



R ∫ N Ð  EQ \f(∂,∂y) \i( , , M dx) 
(iii)
Evaluate  EQ \i( , , R dy)   , holding x constant

(iv)
The desired solution is then



 EQ \i( , , M dx)  +  EQ \i( , , R dy)  = c

In some cases, the following steps are easier to carry out:

(i)
Evaluate  EQ \i( , , N dy)   , holding x constant

(ii)
Evaluate S, where



S ∫ M Ð  EQ \f(∂,∂x) \i( , , N dy) 
(iii)
Evaluate  EQ \i( , , S dx)   , holding y constant

(iv)
The desired solution is then



 EQ \i( , , N dy)  +  EQ \i( , , S dx)  = c

[Example]  (y + 4) dx + x dy = 0


M = y + 4

N = x

Check for exactness


 EQ \f(∂M,∂y)  = 1 =  EQ \f(∂N,∂x) 
ﬁ
Exact Differential


 EQ \i( , , M dx)  =  EQ \i( , , (y + 4) dx)  = x y + 4x


R ∫ N Ð  EQ \f(∂,∂y)  \i( , , M dx)  = x Ð  EQ \f(∂,∂y) (x y + 4x)  = x Ð x = 0

Thus, the solution is 


 EQ \i( , , M dx)  +  EQ \i( , , R dy)   = c

or
x y + 4x = c
#
[Example]
(1 Ð sin x tan y) dx + (cos x sec2 y) dy = 0


M = 1 Ð sin x tan y
N = cos x sec2 y


 EQ \f(∂M,∂y)   = Ð sin x sec2 y =  EQ \f(∂N,∂x) 
ﬁ
Exact Diff.


 EQ \i( , , M dx)  =  EQ \i( , , (1Ð sin x tan y)dx)  = x + cos x tan y


R   ∫ N Ð  EQ \f(∂,∂y) \i( , , M dx)  = cos x sec2 y Ð cos x sec2 y = 0

The solution is then


 EQ \i( , , M dx)  +  EQ \i( , , R dy)   = c

6
Integrating Factors   (Textbook Sec. 1.5)

 EQ \f(1,  y  )  dx + 2 x dy  =  0
 not exact
Since 
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Multiply both sides of the above equation by F(x,y)  =  y/x (integrating factor), then
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 EQ \f(  dx  ,x)  + 2 y dy = 0
 Exact Differential
since 
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A differential equation which is not exact can be made exact by mul​tiply it by a suitable function F(x,y) ( ( 0).  This function is then called an integrating factor.

P(x,y) dx + Q(x,y) dy  =  0
 not exact
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F(x,y) P(x,y) dx + F(x,y) Q(x,y) dy = 0
 Exact

In this case, we need

 EQ \f((,(y) (FP)  =  EQ \f((,(x) (FQ) 
which is a partial differential equation of F(x,y).  In general, it is difficult to determine an integrating factor from the above equation.  However, in some special cases, the integrating factor can be found as shown in the following special cases (Read the textbook, p. 28, for details):
(i)
If  EQ \f(  \b\bc\[( \f( (P ,(y) - \f( (Q ,(x) )  , Q )    = f(x), i.e., a function of x only, then F(x)=e(f(x)dx is an integrating factor, which is also a function of x only.
[Proof]

Since the integrating factor satisfies the PDE


 EQ \f(( , (y ) (FP)  =  EQ \f(( , (x ) (FQ) 
or
F  EQ \f((P, (y )   +  P  EQ \f((F, (y )   =  F  EQ \f((Q, (x )   +  Q  EQ \f((F, (x ) 
or
F  EQ \b\bc\{( \f(  (P  , (y )  -  \f(  (Q  , (x ) )   =  Q  EQ \f(  (F  , (x )     P  EQ \f(  (F  , (y ) 
If we assume that the integrating factor F is function of x only, i.e.,


F = F(x)
(
 EQ \f(  (F  , (y )   = 0

i.e.,
F  EQ \b\bc\{( \f(  (P  , (y )  -  \f(  (Q  , (x ) )   = Q  EQ \f(  dF  , dx ) 
or
 EQ \f(  d lnF  ,dx)   =   EQ \f( \b\bc\{( \f(  (P  , (y )  -  \f(  (Q  , (x ) ) ,Q) =f(x)      (by assumption)
The above equation can be solved if the right-hand-side is function of x only, i.e.,


 EQ \f( d lnF ,dx)   = f(x)
      only

and the solution is then the integrating factor

F = e(f(x)dx 

(ii)
If    EQ \f(   \b\bc\[( \f( (P ,(y) - \f( (Q ,(x) )  , P )    = f(y),  i.e., a function of y only, then e– (f(y)dy is an integrating factor, which is also a function of y only.
[Proof]:  Exercise!
(iii)
If    EQ \f(   \b\bc\[( \f( (P ,(y)  -  \f( (Q ,(x) )   ,Q - P)   = f(x+y) = f(v), then e(f(v)dv is an integrating factor, which is a function of x+y.
(iv)
If    EQ \f(   \b\bc\[( \f( (P ,(y)  -  \f( (Q ,(x) )   ,Q y - P x)   = f(xy)  =  f(v), then e(f(v)dv is an integrating factor, which is a function of xy.
(iii)
If P = y f1(x,y) and Q = x f2(x,y), then  EQ \f(1, x P Ð y Q )   is an inte​grating factor.

[Example]
(4 x + 3 y2) dx + 2 x y dy = 0


P = 4 x + 3 y2  
Q = 2 x y


 EQ \f( (P ,(y)  = 6 y ( 2 y =   EQ \f( (Q ,(x) 
 not exact

Check
 EQ \f(  \b\bc\[( \f( (P ,(y) - \f( (Q ,(x) )  , Q )  =  EQ \f(  6 y - 2 y  , 2 x y )   =  EQ \f(2,  x  )   = f(x)
Thus, the integrating factor F(x) is


F(x) = e(f(x)dx   =  e EQ \s\up16(\i( , , \f( 2 ,x) dx))  = x2
Multiply F(x) on both sides of the differential equation, we have


(4 x3 + 3 x2 y2) dx + 2 x3 y dy = 0
 Exact

(
x4+ x3 y2  =  c
#
[Example]
2 cosh x cos y dx  sinh x sin y dy = 0


Note that 
cosh x  (   EQ \f( ex + e-x ,2) 


sinh x  (   EQ \f( ex - e-x ,2) 

and
d cosh x/dx =  sinh x



d sinh x/dx =  cosh x


P = 2 cosh x cos y

Q = – sinh x sin y


 EQ \f((P,(y)   = 2 cosh x sin y (  cosh x sin y =   EQ \f((Q,(x) 
Check
 EQ \f(  \b\bc\[( \f( (P ,(y) - \f( (Q ,(x) )  , Q )   =   EQ \f( - 2 cosh x sin y + cosh x sin y, - sinh x sin y )   


=  EQ \f(cosh x, sinh x )  = f(x)

Thus, the integrating factor F(x) is


F(x) = e(f(x)dx   =  e  EQ \s\up16(\i( , , \f(cosh x, sinh x ) dx))  = sinh x

Multiply sinh x on both sides of the differential equation, we have


2 sinh x cosh x cos y dx  sinh2 x sin y dy = 0

which can be solved by
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and
 EQ \f((u, (y )   = F Q
(   sinh2x sin y  +  k'(y)  =  - sinh2 x sin y

(
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k(y)  =  constant

Thus the solution to the above ODE is


sinh2x cos y  =  c
#
[Exercise]  
x y dx + ( x2 + y2 + 1 ) dy  =  0
[Exercise]
( y2 + x y + 1 ) dx  +  ( x2 + x y + 1 ) dy  =  0
[Question]
Is the integrating factor of a given ODE unique?
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7
Linear Differential Equations (Textbook Sec. 1.6)

7.1 Definitions
Linear Differential Equations

An nth–order differential equation is linear if it can be written in the form


 EQ \f(dny,dxn)  + an1(x)  EQ \f(dn-1y,dxn-1)  + ... + a1(x)  EQ \f(dy,dx)  + ao(x) y = f(x)
Hence, a first-order linear equation has the form


 EQ \f(dy,dx)  + p(x) y  =  r(x)

e.g.,
y'  y = e2x
1st– order linear


y'   EQ \f(  y  ,x)  =    EQ \f(5,  2  ) x2y3
1st–order nonlinear


y'' + a(x) y' + b(x) y  =  f(x) 
2nd–order linear

Homogeneous Differential Equations

If the function f(x) = 0 [or r(x) = 0], then the above linear differential equation is said to be homogeneous; otherwise, it is said to be nonhomogeneous.

e.g.
y'  y  =  0
homogeneous


y'  y  =  e2x
nonhomogeneous

7.2 Solution of the First-Order Linear Differential Equations
Homogeneous Equation

The solution of the linear homogeneous equation


y' + p(x) y  =  0

can be obtained by separation of variables

 EQ \f(dy,y)  =  p(x) dx

or
y(x)  =  c e EQ \s\up6(– \i( , , p(x) dx)) 
Nonhomogeneous Equations

The nonhomogeneous equation


y' + p(x) y  =  r(x) 

can be written in the following form


[p(x) y  r(x)] dx + dy  =  0

which is of the form


P(x) dx + Q(x) dy = 0

with
P(x) = p(x) y  r(x)


Q(x) = 1

Since
 EQ \f((P(x),(y)   = p(x)  (  0 =   EQ \f((Q,(x) 
the above equation is not exact differential.  However,


 EQ \f(  \b\bc\[( \f( (P ,(y) - \f( (Q ,(x) )  , Q )   = p(x)

we have the integrating factor
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for the differential equation.  Multiply the differential equation by the integrating factor, we have

[y' + p(x) y] e EQ \i( , , )p(x) dx  = 
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r(x) e EQ \i( , , p(x) dx)  
According to chain rule, the left side of the above equation is the derivative of ye EQ \i( , , )p(x) dx  , we have


 EQ \f(d,dx) \b\bc\[( y e\i( , , p(x) dx) )  = r(x) e EQ \i( , , )p(x) dx  
Integrating both sides of the above equation with respect to x, we have


y e EQ \i( , , )p(x) dx  =  EQ \i( , , r(x) e\i( , , p(x) dx)) dx)  + c

or
y  = e-  EQ \i( , , ) p(x) dx     EQ \b\bc\[( \i( , , r(x) e\i( , , p(x) dx) dx)  + c )  
Alternative Solution Procedure：  
i.
Rearrange the equation in the standard form: y' + p(x) y = r(x)

ii.
Derive the integrating factor e EQ \i( , , )p(x) dx  
iii.
Multiply both sides of the given equation by this factor

iv.
Integrate both sides of the resulting equation.   Note that the integral of the left is always just y times the integrating factor.
v.
Solve the integrated equation for y.

[Example]
y' = y + x2
,
y(0)  =  1


y'  y  =  x2
(
y' + p(x) y  =  r(x)

thus, the integrating factor is


e EQ \i( , , )p(x) dx  = e EQ \i( , , - 1 dx)  = e– x
Multiply both sides of the differential equation according to the alternative procedure, we have


e– x (y'  y)  =  x2 e– x
or
( y e– x)'  =  x2 e– x
Integrating both sides, we have


y e–x  =   EQ \i( , , x2 e–x dx)  + c  =  c  ( x2 + 2 x + 2 ) e–x
Thus,
y = c ex  (x2 + 2 x + 2) 
 general solution

Since
y(0)  =  1 
(
c  =  3

thus
y  =  3 ex  ( x2 + 2 x + 2 )
 particular solution for y(0)  =  1

The general solution can also be obtained by the general formula


y = e-  EQ \i( , , ) p(x) dx    EQ \b\bc\[( \i( , , r(x) e\i( , , p(x) dx) dx)  + c )  

= ex  EQ \b\bc\[( \i( , , x2 e–x dx) + c )  

= c ex  (x2 + 2x + 2)
#
[Example]
 EQ \f(dy,dx)  = x3  2 x y
y(1)  =  1

[Solution]
y' + 2 xy = x3 
(
y' + p(x) y = r(x)

 The integrating factor is


e EQ \s\up6(\i( , , p(x) dx))   = e EQ \s\up6(\i( , , 2x dx))   = e EQ \s\up3(x)\s\up6(2) 
Multiply both sides by e EQ \s\up3(x)\s\up6(2)   and integrating, we have


e EQ \s\up4(x)\s\up6(2) ( y' + 2 x y )  = x3 e EQ \s\up4(x)\s\up6(2)
or
( e EQ \s\up4(x)\s\up6(2) y)'  =  x3 e EQ \s\up4(x)\s\up6(2)

e EQ \s\up4(x)\s\up6(2) y  =  4(x)\s\up6(2) EQ \i(, , x3 e dx)  
+ c

or
y  =  e EQ \s\up3(-x)\s\up6(2) \b\bc\[( \i( , , x3 e\s\up3(x)\s\up6(2) dx) + c) 
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      (integration by parts)

y =  EQ \f(x2 - 1, 2 )   + c e EQ \s\up3(-x)\s\up6(2) 
Since y(1)  =  1
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, we have c  =  e

thus,
y  =   EQ \f(x2 - 1, 2 )  + e EQ \s\up3(1-x)\s\up6(2) 
#
Bernoulli's Equations
(Sec. 1.6, p. 36 of the Textbook)

The equation


 EQ \f(dy,dx)   + p(x) y  =  g(x) ya
( a is any real number )

which is known as the Bernoulli's Equation, can be re​duced to linear form by a suitable change of the dependent variables.  For a = 0 and a = 1, the equation is linear, and otherwise, it is nonlinear.  Set


u(x)  =  y1-a
then
u' (x) =  ( 1 a ) y–a y'
so if we multiply both sides of the differential equation by (1a) y–a, we obtain


(1a) y–a y' + (1a) p(x) y1-a = (1a) g(x)

or
u' + (1a) p(x) u  =  (1a) g(x)

The equation is now linear and may be solved as before.

[Example]
y'   EQ \f( y ,x)  =   EQ \f( 5 ,2) x2y3
[Solution]    Compare the above equation with
y' + p(x) y = g(x) ya
we have
a  =  3

Set
u(x) = y1-a = y–2
(
u'(x)  =  – 2 y–3 y'

Multiply both sides of the equation by  2 y–3, we obtain


 2 y–3 y' +  EQ \f(  1  ,x) 2 y–2 = 5 x2
or
u' +  EQ \f(  2  ,x) u  =  5 x2
 1st–order linear differential equation.

The integrating factor is then


e EQ \s\up16(\i(, , \f( 2 ,x) dx))  = x2

multiply both sides of the differential equation of u by x2, we have


x2 u' + 2 x u  =  5 x4
or
(x2 u)'  =  5 x4
(
x2 u  =  x5 + c

or
x2 y–2  =  x5 + c

(
y =  ( x3 + c x–2 ) –1/2
#
[Exercise]  
Show that the differential equation


y' + p(x) y  =  f(x) y ln y

can be made linear if we set u  =  ln y

Read p. 40, Problems 44-47 for Riccati and Clairaut Equations.
Riccati’s Equation
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· Except in special instances, the solution cannot be given in closed form
· If one particular solution is known, then the remaining solutions can be explicitly derived.

Consider two distinct solutions
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[Exercise] 
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Thus,
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8      Applications of First-Order Differential Equations - Modeling
[Example 1]

A tank is initially filled with 100 gal of salt solution containing 0.5 lb of salt per gallon.  Fresh brine containing 3 lb of salt per gallon runs into the tank at the rate of 2 gal/min, and the mixture, assumed to be kept uniform by stirring, runs out at the same rate.  Find the amount of salt in the tank at any time t.

Let Q lb be the total amount of salt in solution in the tank at any time t, and let dQ be the increase in this amount during the infinitesimal interval of time dt.  At any time t, the amount of salt per gallon of solution is therefore Q/100 (lb/gal).  The material balance of salt in the tank is

 EQ \b\bc\{(\a(Rate of Accum.,of Salt,in the Tank))  =  EQ \b\bc\{(\a(Rate of Salt,Flow,into the Tank))  –  EQ \b\bc\{(\a(Rate of Salt,Flow,out of the Tank)) 
The rate at which salt enters the tank is


2 gal/min ( 3 lb/gal = 6 lb/min

Likewise, since the concentration of slat in the mixture as it leaves the tank is the same,  as the concentration Q/100 in the tank itself, the rate of salt leaves the tank is


2 gal/min (  EQ \f(Q,100)  lb/gal =  EQ \f(Q,50)   lb/min

Hence, the rate of accumulation of salt in the tank dQ/dt is 


 EQ \f(dQ,dt)   = 6   EQ \f(Q,50)   
This equation can be written in the form


 EQ \f(dQ,300 - Q)   =  EQ \f(dt,50) 
and solved as a separable equation, or it can be written


 EQ \f(dQ,dt)   +  EQ \f(Q,50)   = 6

and treated as a linear equation. 

Considering it as a linear equation, we must first compute the integrating factor
e EQ \s\up6(\i( , , p(x) dt))   =   e EQ \s\up16(\i( , , \f(1,50) dt))   = et/50
Multiplying the differential equation by this factor gives


et/50  EQ \b\bc\[( \f(dQ,dt)  + \f(Q,50) )  = 6 et/50
From this, by integration, we obtain


Q et/50 = 300 et/50 + c

or
Q  =  300 + c e–t/50
Substituting the initial conditions t  =  0, Q  =  50, we find c  =   250

Hence, 
Q = 300  250 e–t/50
#
[Example 2]

A tank is initially filled with 100 gal of salt solution containing 0.5 lb of salt per gallon.  Fresh brine containing 1 lb of salt per gallon runs into the tank at the rate of 3 gal/min, and the mixture, assumed to be kept uniform by stirring, runs out at the 2 gal/min.  Find the amount of salt in the tank at any time t.

In this case, the rate at which salt enters the tank is


3 gal/min ( 1 lb/gal  =  3 lb/min

Since the amount of brine in the tank increases with time (at 1 gal/min), the concentration of salt in the tank is then


 EQ \f(Q, 100 + t )  lb/gal

Therefore, the rate of salt leaves the tank is


2 gal/min (  EQ \f(Q, 100 + t )  lb/gal =   EQ \f(2 Q, 100 + t )   lb/min

From the mass balance of salt of the system, we have


 EQ \f(dQ,dt)    = 3   EQ \f( 2Q ,100 + t) 
or
 EQ \f(dQ,dt)   +   EQ \f(2 Q, 100 + t )    = 3

The integrating factor in this case is


e EQ \s\up6(\i( , , p(x) dt))   =   e EQ \s\up16(\i( , , \f(2,100 + t) dt))   = (100 + t )2
So that, we have


[ ( 100 + t )2 Q ]'  =  3 ( 100 + t )2
or
Q(t)  =  ( 100 + t ) + c ( 100 + t )–2
Setting t = 0, we find that c  =  – 50(100)2, so that


Q(t)  =  100 + t  50  EQ \b\bc\[( 1 + \f( t, 100 ) )\s\up16( –2) 
#
9
Approximate Solutions
9.1
Method of Direction Fields  Graphic Method 
(Textbook Sec. 1.2 & 1.8)
Slope of a Curve
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y'  =  f(x,y) 
(
y  =  g(x ; c)  




or
F(x,y,c)  =  0
[Example]
y' = –1
(
y = –x + c
or
x + y = c
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[Example]
y' =   EQ \f( 2y ,x) 
(
y = c x2
[image: image59.wmf]
Orthogonal Trajectories

The curves of a family C is said to be orthogonal trajectories of the curves of a family K, and vice versa, if at every intersection of a curve of C with a curve of K, the two curves are perpendicular.
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[Example]
y' = –1
(
y = –x + C
or
x + y =  C


y' = 1

(
y  =  x + K
or
y  x  =  K
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The two families of curves, x + y = C & y  x = K, are orthogonal trajectories of each other.

[Example]
y' =   EQ \f(  2 y  , x ) 


(
y = C x2 ( the Solid Lines in the following Figure )
[image: image62.wmf]
Orthogonal trajectories:  (the Dashed Lines in the above Figure)


y'  =  –  EQ \f( 1 , \f( 2 y ,x) )   =   EQ \f( x ,2 y) 
(
 EQ \f(  x2  ,2)  + y2  =  K
Method of Direction Fields 
for y' = f(x,y)
Step 1
Plot the isoclines (curves of constant slope) of y' = f(x,y), i.e., plot the curves for



f(x,y)  =  k  =  constant

Step 2
Draw a number of parallel short line segments (lineal elements) with slope k along each isocline f(x,y)  =  k

Step 3
Connect the lineal elements to get the approximate solution curves.

[Example]
y' = x y

or
 EQ 

 EQ \f( dy ,y)  =   x dx

(
ln y   =    EQ \f(1,  2  ) x2 + c

or
y   =   c'  e EQ \s\up8(x2/2) 
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Fig. 5.




9.2 Picard's Iteration Method  Successive Approximations 
(Textbook p. 56-58)
Iteration Method :  
Assume we need to solve the (positive) value of x of the algebraic equation:


x2 + x  =  1

or, alternatively


x =   EQ \r( 1 - x ) 
Since the above equation is nonlinear, we propose to solve the value of x by iteration if we assume that the initial guess of x be 0.5, i.e.,


xo =  0.5 

then the 1st approximation of x, x(1), can be calculated by


x(1)  =   EQ \r( 1 - xo )   =   EQ \r( 1 - 0.5 )   =  0.707

Similarly, the 2nd approximation of x, x(2), is then


x(2)  =   EQ \r( 1 - x(1) )   =   EQ \r( 1 - 0.707 )   =  0.541

By the same token, the (n+1)th approximation of x can be solved by


x(n+1)  =   EQ \r( 1 - x(n) )   
where x(n) is the nth approximation of x.  We then obtain, successively, that

(
   ...
x(5)  =  0.657 
...
x(()  =  0.618  

Similarly, consider the initial value problem


y'  =  f(x, y)
;
y(x0)  =  y0
Integrate both sides of the differential equation from x0 to x with respect to x yields


 EQ \i(x0,x, y' dx)  =  EQ \i(x0,x, f(x,y(x)) dx) 
or
y(x)  =  y(x0) +  EQ \i(x0,x, f(t,y(t)) dt) 
Since the function y(t) in the integrand is not known a priori, the integral of the right-hand-side of the above equation can not evaluated unless the approximations of y(t) are introduced.  We now define a sequence of functions {yn(x)}, called Picard iterations, by the successive formulas


y0(x) = y0

y1(x) = y0 +  EQ \i(x0,x, f(t,y0(t)) dt) 

y2(x) = y0 +  EQ \i(x0,x, f(t,y1(t)) dt) 

y3(x) = y0 +  EQ \i(x0,x, f(t,y2(t)) dt) 

.


.


yn(x)  =  y0 +  EQ \i(x0,x, f(t,yn-1(t)) dt) 
Remarks:
Picard's method is of great theoretical values in connection with Picard's existence and uniqueness theorem.  Its practical value is limited because it involves integrations that may be complicated.

[Example]
Consider the initial value problem


y'(x)  =  y
;
y(0)  =  1

In this case, 
f(x,y)  =  y(x)


y0(x) = y0 = 1


y1(x) = y0 +  EQ \i(x0,x, f(t,y0(t)) dt)  = 1 +  EQ \i(0,x, (1) dt)  = 1 + x


y2(x) =y0 +  EQ \i(x0,x, f(t,y1(t)) dt)  = 1 +  EQ \i(0,x, (1 + t) dt)  


= 1 + x +  EQ \f(x2, 2 ) 

y3(x) = y0 +  EQ \i(x0,x, f(t,y2(t)) dt)  

= 1 +  EQ \i(0,x, (1 + t + \f(t2, 2 )) dt)  = 1 + x +  EQ \f(x2, 2! )  +  EQ \f(x3, 3! ) 
Finally, we will have



yn(x)  =  1 + x +  EQ \f(x2, 2! )  + ... +  EQ \f(xn, n! )  =  EQ \i\su(k=0,n, )\f(xk, k! ) 
Hence,
 EQ \o(lim,\s\do12(n(())  yn(x) =  EQ \o(lim,\s\do12(n(())    EQ \i\su(k=0,n, )\f(xk, k! ) 
which converges to the exact solution ex.  
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THEOREM 3

EXAMPLE 3

(Convergence of Picard’s iteration)

Under the conditions of Theorems 1 and 2 the sequence (7) of functions defined by (6)
(with yo(t) = yo = const) converges to the solution y(x) of the initial value problem (1).

Picard iteration

Find approximate solutions to the initial value problem
yi=1+% ¥0) = 0.

Solution. 1n this case, xy = 0,y = 0, f(x, y) = 1 + y2, and (6) becomes

x x
@ = [+ 20l =x+ [ 20
0 0
Starting from y, = 0, we thus obtain (see Fig. 33)

x
yl(x):x+f0dr:x
0

& 1
yz(x)=x+f tzdt=x+§x3
0

af 13\2 1 2 1
)’3(x)=x+f0(t+?) dt=x+§x3+ﬁx5+ax7

etc. Of course, we can obtain the exact solution of our present problem by separating variables (see Example 2
in Sec. 1.3), finding

1 3 2 5 17 7 T T
8) y(x)ftanx7x+3x +Ex +315x e e 72<x<2 .

The first three terms of y5(x) and of the series in (8) are the same. The series in (8) converges for |x| < /2,

and all we may expect is that our sequence yq, ys, - - - converges to a function that is the solution of our problem
for [x| < m/2. This illustrates that the study of convergence is of practical importance. <
y
3L Y3Y2 N
2+
1+
I I I I I I
-3 -2 -1 1 2 3 %
AR
) .
-3+

Fig. 33. Approximate solutions in Example 3

Practical Significance of Picard’s Iteration

Picard used his iteration method for proving Theorems 1-3. His method involves
integrations, which generally become quite involved and lengthy after a few steps. Hence
in precomputer times his method was of little practical value.




9.4
Numerical Method  Read. 19.1, 19.2 of the textbook

10
Existence and Uniqueness of Solutions
[Examples]


(i)
|y'| + |y| = 0
y(0)  =  0
(
Trivial solution, y  0






y(0)  =  1
(
No solution exists


(ii)
y'  =  x

y(0)  =  1
(
unique solution, 

y  =  x2/2 + 1


(iii)
x y'  =  y  1;
y(0)  =  1
(
infinitely many soln's, 
y  =  1 + c x

Questions:  
1
Is there a solution to the problem?



2
Is the solution unique?

ExistenceUniqueness Theorem: (Read the Textbook for details)

If f and  EQ \f( (f ,(y) are continuous and bounded in a rectangle R given by a < x < b, c < y < d that contains the point (x0,y0) (see the following figure), then, in an interval x0 – h < x < x0 + h contained in a < x < b, there is a unique solution y  =  y(x) of the initial value problem


 EQ \f(dy,dx)  = f(x,y)
;
y(x0)  =  y0

[image: image65.wmf]The local solution
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Note that the above theorem is valid for a small region around the initial point, we call such a theorem a local existenceuniqueness theorem.

[Example]  Check the initial value problem


 EQ \f(dy,dx)   = x2 + y3

y(0)  =  1

Since f(x,y)  =  x2 + y3 and  EQ \f((f,(y)   = 3 y2 are continuous everywhere, they are continuous in any rectangle R containing the initial point (0,1).  Hence, a unique local solution exists.

[Example]  Check the initial value problem


 EQ \f(dy,dx)   = x y1/3
y(0)  =  0

Since  EQ \f((f,(y)   =  EQ \f(x, 3 y2/3 )    is not bounded at the initial point (0,0), the above theorem does not apply to this problem.  Indeed, the problem has two solutions


y  0
and
y  =   EQ \f(x3, 3\r(3) ) 
[Exercise]  
Is the solution y =  x2/4 to the differential equation y'  =   EQ \r(y)  with the initial condition y(0)  =  0 unique?
11
Review Questions and Problems of Chapter 1

(I)
Solve the following Differential Equations:

1.
y' + 2 x y = - 6 x 

2.
y dx - dy = x2 y2 dx + x dy

3.
 (x2 + y2) y' + (2xy + 1) = 0, y(2) = -2

4.
2 x y' = 10 x3 y5 + y

5
y'  =   EQ \b\bc\[( \f( 2x + y - 1 ,x - 2) )\s\up18(2) 
6
( 4xy + 6y2 ) + ( 2x2 + 6xy ) y'  =  0

7
x2y'  - 3xy  =  - 2y5/3
8
( 4y3 - x )  EQ \f(dy, dx )   =  y

9
x y' - 2 y  =  x ex
10
2 x y y'  +  ( x - 1 ) y2  =  x2 ex
11
y'   =   x e EQ \s\up5(-x3)  -  3 x2 y
with  y(0)  =  -1

12
( x2 + y2 + 1 ) y'  + x y  =  0

13
( y + tan ( x + y ) ) y'  +  y  =  0

14
x2 y'  =  y2  +  5 x y  + 4 x2
15
( 3 x ey + 2 y ) dx  +  ( x2 ey + x ) dy  =  0

16
( x + y - 2 ) y'  + ( x - y )  =  0

17
(1 + x2) dy + x y dx =  EQ \r( 1+x2 )  dx

18
(2x + 3y - 5) y' + (x + 2y - 3) = 0

19
y'   =    EQ \f(y ex , ex + ( y + 1 ) ey ) 
20
y'   =    EQ \f( 2 x ex - y2 , 2 y ) 

with y(0)  =   EQ \r(2) 
21
y'   =    EQ \f( x - y2 , y ) 
II.
Under what conditions is the following differential equation exact?

(c x2y ey + 2 cos y ) + (x3 ey y + x3 ey + k x sin y ) y' = 0

Solve the exact equation. 

III.
Apply Picard's iteration method to the following initial value problems.


(i)
y' - x y = 1,
;
y(0) = 1


(ii)
y'  =   x y
;
y(0)  =  1

IV
Find the orthogonal trajectories of the circles.



x2 + ( y - c )2  =  1 + c2
Summary

1.
Separation of Variables  (分離變數法)


g(y) dy  =  f(x) dx


 EQ \i(, , g(y))  dy  =   EQ \i( , , f(x))  dx + c
(a)
y'  =  f(ax + by)
where a and b are constants

Let
u  =  ax + by


 EQ \f(du,dx)   =  a + b  EQ \f(dy,dx)   =  a + b f(u)

(
 EQ \i( , , \f(du,  a + b f(u)  )  )  =    EQ \i(,, dx)  + c
(b)
y'  =  f(y/x)

Let 
y/x  =  u
or
y  =  x u
(c)
y'  =  f  EQ \b\bc\(( \f( Ax + By + C ,ax + by + c) ) 
2.
Exact Differential Equations

M(x,y) dx + N(x,y) dy  =  0
Check
 EQ \x(   \f( (M ,(y)  =  \f( (N ,(x)   ) 
Find u such that


 EQ \f((u,(x)   =  M(x,y)

 EQ \f((u,(y)   =  N(x,y)

Then the general solution is


u(x,y)  =  c
Integrating Factor:

(a)
If  EQ \f(  \b\bc\[( \f( (P ,(y) - \f( (Q ,(x) )  , Q )    =  f(x),  then e(f(x)dx is an integrating factor.
(b)
If    EQ \f(   \b\bc\[( \f( (P ,(y) - \f( (Q ,(x) )  , P )    =  f(y),  then e– (f(y)dy is an integrating factor.

(iii)
If    EQ \f(   \b\bc\[( \f( (P ,(y)  -  \f( (Q ,(x) )   ,Q - P)   =  f(x+y)  =  f(v), then e(f(v)dv is an integrating factor.

(iv)
If    EQ \f(   \b\bc\[( \f( (P ,(y)  -  \f( (Q ,(x) )   ,Q y - P x)   =  f(xy)  =  f(v), then e(f(v)dv is an integrating factor.
3.
Linear Differential Equations

 EQ \f(  dy  ,dx)  + p(x) y  =  r(x)
解題步驟：

i.
Write the equation in the standard form: y' + p(x) y  =  r(x)

ii.
Compute the integrating factor e EQ \i( , , )p(x) dx  
iii.
Multiply both sides of the given equation by this factor

iv.
Integrate both sides of the resulting equation.   Note that the integral of the left is always just y times the integrating factor.
v.
Solve the integrated equation for y.
Bernoulli's Equations

 EQ \f(dy,dx)   + p(x) y  =  g(x) ya
( a ( 0 or 1 )

Set


u(x)  =  y1-a
(
u' + ( 1 a ) p(x) u  =  ( 1 a ) g(x)
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